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Direct numerical simulations are used to study mixing and dispersion in decaying
stably stratified turbulence from a Lagrangian perspective. The change in density of
fluid particles owing to small-scale mixing is extracted from the simulations to provide
insight into the mixing process. These changes are driven by temporally and spatially
intermittent events that are strongly suppressed as the stratification increases and
overturning motions disappear. This occurs for times Nt > 2π, i.e. after one buoyancy
period, where N is the buoyancy frequency. The role of small-scale mixing processes
in the density (or buoyancy) flux is analysed. After an initial transient, we find that
diapycnal displacements due to mixing dominate the dispersion of fluid particles,
even in weak stratification. The relationship between the diapycnal diffusivity and
vertical dispersion coefficients is found to be strongly dependent on stratification.
Models for the mixing following fluid particles are investigated. The time scale for the
density changes due to small-scale mixing is shown to be approximately independent
of N and instead remains linked to the energy decay time scale which is relatively
insensitive to stratification. There are large changes in the structure of these flows as
they evolve under the influence of buoyancy forces. We investigate these changes and
their relationship to mixing. We find that strong mixing events are closely linked to
the presence of overturning regions in the flow, and that they occur close to (but not
within) these regions. The results reported here have implications for the development
of improved models of diffusion in stably stratified turbulence.

1. Introduction
Most geophysical flows, such as in the oceans, atmosphere, lakes, or estuaries,

are influenced by the presence of stable density stratification. Turbulent mixing in
strongly stable flows often occurs during transient episodic events (e.g. due to the
local breakdown of internal waves or from local shear instabilities) where there is
no sustained source of energy. In these cases, the turbulence will subsequently decay
and dissipate its initial energy. However, the mixing that takes place in such events
could contribute significantly to overall mass/momentum balances and therefore be
important for the understanding and modelling of these systems. Reviews of the
structure and mixing of stably stratified geophysical flows are given by Gregg (1987)
and Riley & Lelong (2000).

The ability to predict mixing and dispersion in stably stratified geophysical flows
has many practical applications. For example, the management of air quality in the
atmospheric boundary layer requires accurate models for predicting how turbulence



198 S. K. Venayagamoorthy and D. D. Stretch

disperses pollutants released by industrial activities. The current generation of
atmospheric dispersion models perform relatively poorly in stably stratified conditions
(Nappo & Johansson 1999) which indicates a need for further work to improve their
parameterizations.

A Lagrangian perspective, focusing on the advection of fluid particles, is a natural
approach for studying mixing and dispersion in turbulent flows and dates back to the
seminal work of G. I. Taylor (1921). Yeung (2002) gives a detailed review of results
obtained from Lagrangian investigations. Lagrangian stochastic models have become
increasingly important in problems involving turbulent mixing and dispersion. They
also have a key role in turbulence models based on probability density function or
PDF methods, which are especially suited to applications involving reacting flows
(Pope 1994, 2000).

Pearson, Puttock & Hunt (1983, hereinafter referred to as PPH) developed a
Lagrangian model of fluid particle dispersion in homogeneous, stationary, stably
stratified turbulence. The PPH model explicitly accounts for small-scale mixing
between fluid particles. They predict that vertical dispersion σz can cease to grow at
intermediate times, but this is sensitive to a parameter in the theory that quantifies the
rate of small-scale mixing between fluid particles. For times t >N−1, their prediction
can be written as

σz = (w′/N)
(
ζ 2
z + 2γ 2Nt

)1/2
, (1.1)

where ζz is an order unity dimensionless parameter that depends on the pressure
gradient spectrum, and γ is a mixing coefficient that determines the rate at which
the density of fluid particles changes owing to small-scale mixing. Therefore, if γ � 1,
the model predicts that σz � w′/N � constant for intermediate times 1 < Nt � γ −2.
For larger times, or for large γ , the model predicts σz ∼ t1/2 in agreement with the
classical diffusion limit. Hunt (1982, 1985) estimated that in the atmospheric boundary
layer, γ typically varies in the range 0.1 <γ < 0.4 which allows for both types of σz

behaviour.
The importance of this issue was first revealed by Csanady (1964). In unstratified

turbulence, fluid particles can move vertically over unlimited distances. Therefore
large-scale vertical dispersion is relatively insensitive to small-scale molecular mixing.
However, in stably stratified turbulence, work must be done against buoyancy forces
to move fluid particles in the vertical. Therefore, without small-scale mixing, the
available energy constrains the particle motions to vertical distances of order w′/N
about their equilibrium density level. However, molecular diffusion can alter the fluid
particle densities, which in turn alters the equilibrium levels about which they oscillate.

PPH developed the ideas of Csanady further, and argued that the vertical flux of
density in a turbulent flow can be attributed to two processes: the first is the vertical
displacements of fluid particles by advection, while the second involves the exchange
of density between fluid particles. In stably stratified flows, PPH suggested that
the second process can become dominant because of the aforementioned constraint
on the vertical displacements. If this is the case, then in contrast to unstratified
turbulence, small-scale mixing plays a crucial role in diffusion for stably stratified
turbulence. Other models of diffusion in stably stratified turbulence (e.g. Venkatram,
Strimaitis & Dicristofaro 1984) do not account explicitly for small-scale mixing and
are based on an extension of classical statistical diffusion theory.

There have been no definitive validation studies of the PPH theory for diffusion
in stably stratified fluids. Although PPH reported some comparisons with field and
laboratory data (e.g. Britter et al. 1983), these were limited by the lack of direct
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measurements of fundamental Lagrangian quantities used in their theory, particularly
concerning the role of small-scale mixing processes. A deeper understanding of these
processes therefore seems important for the development of improved models.

As a first step towards meeting this objective, we have performed direct numerical
simulations of diffusion in transient (decaying) homogeneous stably stratified flows.
DNS studies of diffusion in stably stratified turbulence have been reported by
Kimura & Herring (1996) and Kaneda & Ishida (2000); however, they focused only on
particle displacement statistics. A novel aspect of the work described here is our focus
on the issue of how the densities of fluid particles change owing to small-scale mixing.

The key questions that we address in this study are as follows.
(i) What is the role of small-scale mixing processes in changes to the density

perturbations ρ ′ following fluid particles? Both advection within the background
mean density gradient and mixing contribute to changing ρ ′. In § 4.3.1, we investigate
how their roles change as buoyancy effects increase.

(ii) What is the role of small-scale mixing in the density (or buoyancy) flux of these
flows? As noted above, contributions to the flux come from both the displacement (or
segregation) of fluid particles and the mixing between fluid particles. We investigate
this issue in § 4.3.2 and discuss how the role of small-scale mixing changes as the
stratification strengthens.

(iii) How should small-scale mixing effects be incorporated into models of mixing
and dispersion in stably stratified turbulence? We consider this issue in § 4.3.3, starting
with the mixing model introduced by PPH.

(iv) How is Lagrangian mixing related to broader features of the flow such as
overturning motions and internal waves? We address this question by examining the
evolution of the flow structure in § 4.4.

2. Theoretical background
2.1. Governing equations

The governing conservation equations for the velocity and density fields are taken to
be the Navier–Stokes equations with the Boussinesq approximation.

Du
Dt

= − 1

ρ0

∇p +
ρ ′

ρ0

g + ν∇2u, (2.1a)

∇ · u = 0, (2.1b)

Dρ

Dt
= κ∇2ρ, (2.1c)

where u = (u, v, w) is the velocity vector, p is the kinematic pressure, g =(0, 0, −g),
ρ0 is a (constant) reference density, and ρ ′ is the density fluctuation relative to the
local mean value, ρ = ρ + ρ ′.

Consider the case of a transient (i.e. decaying), homogeneous, stably stratified
turbulence. Since the flow is homogeneous, the background mean density gradient is
constant, with a buoyancy frequency given by N2 = −(g/ρ0)(∂ρ/∂z). The energetics
of this flow, derived in the usual way from (2.1), is described by

d(KE)/dt = −b − εKE, (2.2a)

d(PE)/dt = b − εPE, (2.2b)

d(E)/dt = −ε, (2.2c)
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where KE = (u2 + v2 + w2)/2 is the turbulent kinetic energy, PE =

− 1
2
(g/ρ0)(∂ρ/∂z)−1ρ ′2 is the (available) turbulent potential energy, E = KE + PE

is the total energy, b = (g/ρ0)ρ ′w is the buoyancy flux, and εKE , εPE , ε =(εKE + εPE)
are the dissipation rates of KE, PE and E, respectively. In this study, we focused on
the case where the initial potential energy is zero.

2.2. Lagrangian mixing

The density perturbation following a fluid particle is given by

d

dt
ρ ′〈t〉 = −∂ρ

∂z
w〈t〉 + κ∇2ρ ′〈t〉, (2.3)

where the notation 〈t〉 is used to denote coordinates following a fluid particle. The
local divergence of the diapycnal flux, κ∇2ρ ′〈t〉, gives the rate at which the fluid
particle is changing its density owing to small-scale mixing: we refer to this as the
Lagrangian mixing rate. One of the key objectives of this work was to study the
characteristics and time history of the mixing following fluid particles. As noted
in § 1, this seems to be fundamental to the detailed understanding of mixing and
dispersion in stratified flows. Note that in a fully turbulent flow the magnitude of the
Lagrangian mixing rate should not depend directly on the molecular diffusivity since
the turbulence generates scales that are sufficiently small for molecular diffusion to
balance advection.

Integrating (2.3) with respect to time with the initial condition ρ ′〈0〉 = 0 yields

ρ ′〈t〉 = −∂ρ

∂z
z〈t〉 + 	ρ〈t〉, (2.4)

where z〈t〉 is the vertical particle displacement relative to its initial position, and the
change in density of the fluid particle 	ρ〈t〉 is given by

	ρ〈t〉 =

∫ t

0

κ∇2ρ ′〈τ 〉 dτ . (2.5)

Equation (2.4) shows that fluid particle displacements z〈t〉 may be considered to
comprise an ‘isopycnal’ component zi = −ρ ′/(∂ρ/∂z) and a ‘diapycnal’ component
z∗ =	ρ/(∂ρ/∂z) with

z〈t〉 = zi〈t〉 + z∗〈t〉. (2.6)

The isopycnal component zi represents the displacement of a fluid particle from its
equilibrium level in the background mean density gradient, i.e. the level where its
density matches that of the background. The diapycnal displacement z∗ represents a
change in the particle equilibrium level owing to changes in its density. The vertical
velocity of a fluid particle w =dz/dt may similarly be viewed in terms of an isopycnal
component wi = dzi/dt and diapycnal component w∗ = dz∗/dt , where (from (2.3))

w〈t〉 = wi〈t〉 + w∗〈t〉. (2.7)

This decomposition of displacements and velocities into isopycnal and diapycnal
components was introduced by PPH and Hunt (1985), and in a more general form
by Winters et al. (1995, 1996).

Ensemble averaging over all fluid particles, dispersion coefficients associated with
the vertical displacements may be defined as

Kz =
1

2

d

dt
z2〈t〉 = zw〈t〉, (2.8a)
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Ki =
1

2

d

dt
zi

2〈t〉 = ziwi〈t〉, (2.8b)

K∗ =
1

2

d

dt
z∗2〈t〉 = z∗w∗〈t〉. (2.8c)

Note that it follows from (2.6) and (2.7) that

Kz = Ki + K∗ + z∗wi + ziw∗ . (2.9)

The turbulent (or advective) density flux may be obtained by multiplying (2.4) by
w〈t〉 and ensemble averaging to give

ρ ′w〈t〉 = −Kz (∂ρ/∂z) + 	ρ w . (2.10)

Equivalently, using (2.7),

ρ ′w 〈t〉 = ρ ′wi 〈t〉 + ρ ′w∗ 〈t〉 = − [Ki + Kd] (∂ρ/∂z), (2.11)

which states that contributions to the flux come from two mechanisms. The first
is associated with the (reversible) displacement of isopycnals and is given by the
isopycnal dispersion coefficient Ki , i.e. ρ ′wi = −Ki (∂ρ/∂z); the second is associated
with the (irreversible) diapycnal displacements z∗ that arise from changes to the
density of fluid particles owing to small-scale mixing. This contribution to the flux
is given by a diapycnal diffusivity Kd , i.e. ρ ′w∗ = −Kd (∂ρ/∂z), where Kd = ziw∗ is
related to the scalar dissipation rate by

Kd =
ερ

(∂ρ/∂z)2
, (2.12)

with

ερ = −κ ρ ′∇2ρ ′ = κ ∇ρ ′ · ∇ρ ′. (2.13)

Winters & D’Asaro (1996) derived an exact expression relating diapycnal flux to
the mean square density gradients averaged over isopycnal surfaces. Their derivation
used a reference state for the density field where all fluid particles are adiabatically
rearranged to their equilibrium positions, i.e. to a state of minimum potential energy
(see also Winters et al. 1995). In the present case, this reference state is the background
mean density field which does not change because the flow is homogeneous with a
uniform diapycnal flux that is divergence free. Furthermore, statistical homogeneity
also implies that averages over isopycnal surfaces are formally equivalent to volume
averages. The diapycnal diffusivity derived by Winters & D’Asaro (1996) simplifies to
(2.12) in this case.

Note that the diapycnal diffusivity Kd = ziw∗ is not in general equal to the diapycnal
dispersion coefficient K∗ = z∗w∗ defined above (equation (2.8c)). However, if the
isopycnal displacements (due to advection) and the diapycnal displacements (due to
small-scale mixing) are statistically independent, i.e. ziz∗ = 0, and if the integrated
changes in the fluid particle densities are independent of the velocity, i.e. 	ρ w = 0,
then it follows that Kd = K∗. Both conditions are expected to be true for high Re

number turbulent flows where there is large separation between the advective and
diffusive scales. For example, Pope (1998) analysed the effects of molecular diffusivity
on turbulent mixing of passive scalars. He showed that if the scalar flux is independent
of the molecular diffusivity, as suggested by experiments and DNS at high Reynolds
and Péclet numbers, then the Lagrangian mixing rate must be independent of the
velocity, which implies 	ρ w = 0.

For a transient turbulent mixing event (as considered here), the buoyancy flux
(g/ρ0)ρ ′w can be integrated over the duration of the event t = 0 → ∞ to give (using
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(2.10))

B = N2 1
2
z2〈∞〉 +

∫ ∞

0

g

ρ0

	ρ w〈t〉 dt, (2.14)

where it follows from (2.6) after putting ρ ′〈∞〉 = zi〈∞〉 =0, that

z2〈∞〉 = z∗2〈∞〉. (2.15)

The ratio of the integrated buoyancy flux B to the initial turbulent kinetic energy
defines a mixing efficiency for the transient mixing event and represents the proportion
of the initial kinetic energy that goes into doing work against buoyancy forces (Stretch
et al. 2001). The relationship between the mixing efficiency and the strength of the
stratification is important for quantifying the effects of episodic mixing events in
geophysical flows (e.g. Linden 1979; Gregg 1987). Equations (2.14) and (2.15) indicate
that the mixing efficiency is related to the asymptotic diapycnal displacements of fluid
particles to new equilibrium positions within the background mean density gradient.
In stably stratified flows, if small-scale mixing were absent (	ρ =0) then z2〈∞〉 would
be zero since all fluid particles would be driven by buoyancy forces to ultimately
return to their original equilibrium levels. The mixing efficiency would therefore also
be zero.

3. Methods
3.1. Eulerian velocity field

The numerical simulations described here were carried out using the pseudo-spectral
DNS code described by Riley, Metcalfe & Weissman (1981). The DNS code simulates
a flow field that is periodic in all three spatial coordinates, with constant background
density gradient. Simulations were performed at resolutions ranging from 323 to 1283,
but all the results reported here were obtained at 643.

For all numerical experiments, the turbulent flow field was initialized as a Gaussian,
isotropic and solenoidal velocity field in the usual way using random Fourier modes
with a specified energy spectrum. The initial energy spectrum had an exponential
form (see e.g. Townsend 1976):

E(k) = C u2
0 L5

0 k4 exp
[
− 1

2
k2L2

0

]
,

where C is a constant scaling factor, and u0 and L0 are initial velocity and length
scales of the turbulence. This spectrum has its peak energy at wavenumbers kL0 = 2.
The Reynolds number for all 643 simulations was Re = u0L0/ν = 200. The Prandtl
(or Schmidt) number was Pr = ν/κ = 0.5 in order to ensure accurate resolution of
the smallest scales of the density field, although some simulations at Pr = 1 were also
carried out.

The stable stratification can be characterized by the initial Richardson number,
defined as Ri = (NL0/u0)

2, which was varied in the range 0 < Ri < 1000. Note that
there are two time scales imposed on the flow, the initial turbulence time scale L0/u0

and the buoyancy time scale N−1. The ratio of these time scales is Ri1/2.
For all simulations, the initial energy was exclusively kinetic in form, i.e. the initial

density fluctuations (and hence PE0) were set to zero. The turbulence was then allowed
to decay until at least 90% of the initial turbulence energy had dissipated. Decay
times of ten times the initial time scale of the turbulence L0/u0 were used.

Numerical experiments were also carried out using an alternative initialization
procedure where the flow was allowed to evolve, without any buoyancy effects, to
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time u0t/L0 = 1. The scalar fluctuations were then set to zero before restarting the
simulations with buoyancy effects turned on. This procedure, also used by Kimura &
Herring (1996) and Metais & Herring (1989), is intended to allow the nonlinear
transfer to small scales to develop prior to the sudden introduction of the stratification.
Results from these simulations (e.g. the evolution of the energy and fluxes) were at
least qualitatively similar to those in which the stratification was introduced at t = 0.
It was decided to use the t =0 initialization for the main set of numerical experiments
because the initial spectrum is more precisely defined and repeatable at different
resolutions and Reynolds numbers. A similar approach was used by Kaneda & Ishida
(2000). We note that neither of these initialization schemes is a precise representation
of physically realizable flows, such as in laboratory experiments using grid-generated
turbulence with salt or heat stratified fluids. Nevertheless, comparison between DNS
and such experiments (e.g. Metais & Herring 1989) has indicated satisfactory general
agreement.

The initial velocity scale u0, length scale L0, and density scale L0|∂ρ/∂z| are used
to non-dimensionalize the results presented in this paper.

3.2. Particle tracking

In order to gather Lagrangian statistics, a particle-tracking algorithm was incorpo-
rated into the DNS code of Riley et al. (1981). Given an evolving three-dimensional
periodic turbulent velocity field at discrete collocation (grid) points (available from
the Eulerian DNS), an interpolation scheme was required to determine the velocity
at any arbitrary position within the field. A cubic spline scheme was selected for
this study, and follows the formulation of Yeung & Pope (1988). It is fourth-order
accurate and provides twice-continuously differentiable approximations.

Using the interpolation scheme, the advection tracks of fluid particles can be
computed from a set of initial starting positions by numerical integration. Denoting
x〈 t 〉 and u〈 t 〉 as the position and velocity at time t of a fluid particle with initial
position x〈 0 〉 at time t = 0, the equation of motion of the particle is

dx〈t〉
dt

= u〈t〉, (3.1)

where the Lagrangian velocity u〈t〉 is related to the Eulerian velocity u(x, t) by

u〈t〉 = u(x〈t〉, t).

Particle positions are obtained by integrating (3.1) in time using a second-order
accurate Adams–Bashforth scheme. The time step was the same as for the Eulerian
simulation.

Both Lagrangian velocities and densities were interpolated at each time step of the
simulations. The mixing following the fluid particles was not directly interpolated,
but was inferred from (2.3).

A total of 512 particles was tracked in each simulation. They were initially
distributed onto an 83 equi-spaced cubic sub-lattice of the full computational domain.
The initial spacing between particles was therefore about 0.7L0.

3.3. Statistical averaging

All the Eulerian statistics that are reported here are volume averages over the
computational domain. All Lagrangian statistics are ensemble averages over the full
set of particles used in the simulations (i.e. 512 particles in this case). We note that, for
a statistically homogeneous flow field, single time Eulerian and Lagrangian statistics
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Figure 1. Comparison of �, Eulerian and +, Lagrangian averages of the buoyancy flux for
(a) Ri = 1.58, and (b) Ri = 158.

are formally equivalent. A comparison of Eulerian and Lagrangian averages for the
buoyancy flux is shown in figure 1 where it can be seen that they are closely matched
(as required). This indicates that the sample size of 512 particles, while relatively
small, is sufficient for obtaining accurate second-order statistics, i.e. to within about
5% of their Eulerian counterparts.

4. Results and discussion
4.1. Flow energetics

In this section, we present a brief discussion on the flow energetics (Eulerian statistics)
of these stably stratified flow simulations in order to highlight some key features of the
flow evolution and to establish that the results from the present simulations are not
significantly different to those previously obtained from DNS of decaying stratified
turbulence (Riley et al. 1981; Metais & Herring 1989; Kimura & Herring 1996).

Figure 2 shows the behaviour of kinetic energy, potential energy and total energy
for Ri = (1.58, 10 and 158) with corresponding Brunt–Väisälä period TBV of 5, 2 and
0.5, respectively, non-dimensionalized by L0/u0. In all the cases, the potential energy
is initially zero, but grows rapidly (especially in the high Ri cases) and peaks at
approximately TBV /6. The potential energy then decays while oscillating at about half
the Brunt–Väisälä period. The kinetic energy initially reduces more rapidly for the
strongly stable cases (e.g. Ri = 158) owing to the faster conversion of kinetic energy
to potential energy. However, this process is reversed soon after the peak in potential
energy occurs (see figure 2c). At this stage, the kinetic energy can increase because of
an exchange between potential energy and vertical kinetic energy, before continuing
to decay to almost zero at times of order 10L0/u0.
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versus Nt . The Richardson numbers corresponding to the lines in each plot are (left to right)
Ri = 0.10, 0.39, 1.58, 10, 39.5, 158 and 1000.

The evolution of the horizontal kinetic energy (HKE), the vertical kinetic energy
(VKE), and combined potential energy (PE) and VKE are shown in figure 3 as
a function of Nt . The evolution of HKE shows relatively small differences with
changing Ri. In contrast, the evolution of VKE shows the effects of an emergent
internal wave field for the high Ri flows and for times Nt � 2π. The oscillations in the
VKE (at about twice the buoyancy frequency) are due mainly to exchanges between
VKE and PE, and are therefore not evident in the plots of (VKE + PE) and HKE.
This suggests a decoupling of the vertical (internal wave) motion from the horizontal
modes, an observation made previously by Riley et al. (1981) and Metais & Herring
(1989).
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Note that for large times, the total energy remaining in the flow is slightly higher
for the more strongly stratified cases (refer to figure 2) indicating a (small) overall
reduction in dissipation as the stratification strengthens. Integrated over the full
duration of the simulations, 0 � u0t/L0 � 10, the change in the total dissipation
between Ri = 0 and Ri = 1000 is less than 10%. However, the temporal distribution
of the dissipation is altered by the stratification with dissipation rates tending to
be higher than the unstratified case for times Nt � 2π, but lower for times Nt � 2π.
The relative insensitivity of dissipation to the stratification strength has been noted
previously by Riley et al. (1981) and others, and is discussed in some detail by
Hanazaki & Hunt (1996).

The contributions to the total energy dissipation from the dissipation of kinetic and
potential energy are shown in figure 4 for Ri = 1.58, 10 and 158. As the stratification
becomes stronger, the contribution from the potential energy dissipation εPE becomes
a significant proportion of the total energy dissipation ε. Integrated over the duration
of the simulations, this proportion reaches about 30%.

Figure 5 shows the evolution of the buoyancy flux (g/ρ0)ρ ′w for Ri =1.58, 10 and
158 as a function of non-dimensional time Nt . The flux grows rapidly (it is initially
zero in these simulations) and peaks at Nt � 1 which is also when the potential energy
peaks. It then reduces to zero at times Nt � 2, and in the more strongly stable cases,
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changes sign and oscillates about zero with a period of about half the buoyancy
period. This process is physically established when fluid particles have converted
their vertical kinetic energy to potential energy, and start migrating back towards
their equilibrium levels, thereby reconverting their potential energy back into kinetic
energy. These ‘wavelike’ features of the flux evolution have been previously shown
(Hunt, Stretch & Britter 1988; Hanazaki & Hunt 1996; Kaneda & Ishida 2000) to be
reproduced by linear theory.

Shih et al. (2005) used results from a large number of simulations of homogeneous,
sheared, stratified turbulence to show that the turbulence activity parameter ε/νN2

may be used to parameterize the turbulent diffusivity in these flows. This parameter
is also widely used for mixing estimates in geophysical flows. Shih et al. suggest three
regimes: a diffusive regime (ε/νN2 < 7); an intermediate regime (7 < ε/νN2 < 100);
and an energetic regime (ε/νN2 > 100). In the diffusive regime, turbulence and mixing
are weak and diffusivities approach molecular values. In the intermediate and energetic
regimes, diffusivities increase with ε/νN2. Observed values in the ocean thermocline
are typically in the intermediate range.

The evolution of ε/νN2 for the present simulations are shown plotted in figure 6.
For the lower Ri cases, values start in the energetic or intermediate regimes and decay
as the flow evolves. However, for the most stable cases (Ri � 40), the values are within
the diffusive regime for the entire duration of the simulations. Therefore only weak
mixing is anticipated in these cases.

4.2. Lagrangian displacements

In figure 7, sample three-dimensional particle tracks for Ri =0.39, 1.58, 10 and 158
are shown. The shading of the particle tracks indicates the local rate of mixing
κ∇2ρ ′(t). The tracks for the low Ri flows show how the particles wander with
freedom in all three spatial directions. On the other hand, in the strongly stable
case (Ri = 158), the particle is more or less restricted to a horizontal plane with
small vertical oscillations at approximately the Brunt–Väisälä period TBV = 2π/N .
This corroborates the speculation that the vertical motions of these strongly stable
flows may be characterized as linear internal waves.
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To further elucidate this, we plotted some sample time histories of the vertical
velocity w and density fluctuations ρ ′ of particles for Ri = 10, 158 and 1000, as shown
in figure 8. The time series show that for Nt � 2π both w and ρ ′ oscillate with periods
of order TBV , and that ρ ′ is 90 ◦ out of phase with w. This clearly indicates the
emergence of linear internal wave motions for Nt � 2π, especially for the strongly
stable cases (Ri = 158, 1000).
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The mean square vertical displacements, z2〈t〉, of particles from their initial positions
are shown in figure 9(a) as a function of time u0t/L0 and for various Ri values. The
displacement variances grow initially, but when Ri > 0, they level off to near constant
values that scale approximately as Ri−1. Figure 9(b) shows the same data, scaled with
Ri, and plotted as a function of non-dimensional time Nt . Note that z2〈t〉 starts to
level off at Nt � 2, which is when the buoyancy fluxes reduce to zero (refer to figure 5).
The displacement statistics plotted with this scaling collapse well at small times and
stay together to within about a factor of two for large times.

In the case of the strongest stratifications (e.g. Ri =1000), the mean square
displacements reduce slightly at large times. This is associated with residual density
fluctuations that relax at long time scales as fluid particles gradually re-settle to
their equilibrium levels within the density gradient, a process that gives rise to a
counter-gradient flux. Hanazaki & Hunt (1996) discussed the presence of sustained
counter-gradient fluxes in these flows, and noted that they depend on the Prandtl
number of the fluid and that less diffusive scalars can result in stronger counter-
gradient fluxes at small scales.

The growth of the r.m.s. vertical displacements for small times is consistent with
the initial Taylor range, σz〈t〉 ∼ t for all Ri in our simulations. For the unstratified
case (Ri = 0), the growth is σz〈t〉 ∼ t1/2 at long times, consistent with Taylor’s theory
for stationary turbulence, although in this case the turbulence is decaying. We observe
that there is no t1/2 growth at long times for any of the Ri > 0 cases.

The mean square horizontal displacements x2〈t〉 and y2〈t〉 shown in figure 10
indicate that stable stratification has only small effects on the particle displacements
in the horizontal plane. In fact, the horizontal displacements are slightly enhanced
with increasing stratification. Therefore, at large times, there are residual horizontal
motions present in these strongly stratified flows that are growing in scale more
rapidly than in more weakly stratified cases.

The displacement statistics discussed above are consistent with those previously
presented by Kimura & Herring (1996) and Kaneda & Ishida (2000).
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4.3. Lagrangian mixing

The results discussed in §§ 4.1 and 4.2 are similar to those previously reported by
Riley et al. (1981), Metais & Herring (1989), Kimura & Herring (1996), or Kaneda &
Ishida (2000). In this section, we focus on the novel contribution of the present work,
namely our results concerning the mixing following fluid particles. Recall from § 2.2
that the Lagrangian mixing rate is defined as the rate at which fluid particles are
changing their density and is given by the local divergence of the diapycnal flux
following the particles, i.e. Dρ/Dt = κ∇2ρ.

4.3.1. Spatio-temporal characteristics

The evolution of the mean square Lagrangian mixing rates are shown plotted in
figure 11 as a function of time. It can be seen how average mixing rates initially
increase rapidly from their zero initial values to peak at times of order u0t/L0 � 1
or less, before decaying approximately exponentially down to negligibly small values
at u0t/L0 = 10. When the time axis is re-scaled using the buoyancy frequency N , as
shown in figure 11(b), it is evident that the mixing rates tend to collapse to small values
at times 2π � Nt � 4π, i.e. between one and two buoyancy periods TBV = 2π/N after
initializing the flow. We later show (§ 4.4) that this is also the time when overturning
motions disappear from the flow.

Sample time histories of the mixing following fluid particles are shown in figure 12,
together with corresponding time series for the density perturbations. It can be
seen that the mixing is temporally intermittent. That is, for this transient (decaying)
turbulent flow, most of the mixing for individual fluid particles seems to occur during
a small number of intense short-lived events, so that the residence time of particles
in regions where there is intense mixing is small. This is also evident in the sample
time histories shown in figure 7.
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Mixing rates are also spatially intermittent. Probability distributions of mixing rates
during the intense mixing phase of the flow (Nt � 2π, see figure 11) are non-Gaussian
with kurtosis excess in the range 10–40 (decreasing for stronger stratifications).
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From (2.3), it can be seen that changes to the density perturbation following fluid
particles have a contribution from both the stirring action of the vertical motion
within the background mean density gradient, and from small-scale mixing. The
sample time histories in figure 12 indicate that the latter can dominate the changes
in the density perturbations of fluid particles during the mixing phase of the flow.
The density perturbations shown in figure 12 are non-dimensionalized by the scale
L0|∂ρ/∂z|. It is therefore evident from the samples shown in figure 12 that episodic
intense mixing events can produce sudden density changes that are equivalent in
magnitude to that from a vertical displacement of order L0 within the background
density gradient.

To further illustrate the relative roles of ‘stirring’ and ‘mixing’ in changing the
density perturbations of fluid particles, ensemble-averaged cross-correlations between
the changes in density perturbations dρ ′/dt (the term on the left-hand side of (2.3)) and
the vertical velocities and mixing rates (representing the two terms on the right-hand
side of (2.3)) are shown in figure 13 for two different Ri numbers. Disregarding the
initial transient which is an artefact of the initial conditions used for the simulations,
it can be seen that the relative importance of ‘stirring’ and ‘mixing’ changes during
the evolution of the flow. During the intense mixing phase of the flow (Nt < 2π), the
instantaneous density variations are driven by the small-scale mixing processes, with
stirring having a relatively smaller role. However, as mixing rates reduce (Nt � 2π), the
roles gradually reverse and at larger times (Nt > 4π), the rate of change of the density
perturbation following fluid particles becomes nearly perfectly correlated with their
vertical velocities. The latter is consistent with internal wave kinematics, where fluid
particles are oscillating about their equilibrium level within the background (linear)
density profile, but with irreversible mixing essentially absent (see also figure 8).

In the Ri = 0 case (not shown here), the correlations between dρ ′/dt (where ρ is
interpreted as a passive scalar concentration in this case) and the mixing remain
consistently high (� 0.8) for the duration of the simulation. The corresponding
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correlations between dρ ′/dt and the vertical velocities are much smaller (� 0.2)
and also remain approximately constant during the simulation.

4.3.2. The role of Lagrangian mixing in the density flux

One of the key questions of this investigation concerns the role of small-scale
mixing in the density (or buoyancy) flux. As noted in § 2.2, it has been speculated that
small-scale mixing becomes increasingly important as the stratification strengthens
because of the constraints on vertical particle displacements. The simulations allow
this supposition to be tested directly.

The role of Lagrangian mixing can be analysed by considering the relative
magnitude of the isopycnal and diapycnal displacements as defined in § 2.2. Figure 14
shows the evolution of the mean square displacement components with time for
various Ri numbers.

Consider first the Ri = 0 case where the density is a passive scalar marker with
no dynamical effects on the turbulence or on the dispersion process. Fluid particles
are initially advected away from their starting positions (where their densities match
the background mean values) without changing their densities (i.e. the Lagrangian
mixing is initially zero). During this initial transient, the isopycnal displacement
component dominates. However, by time u0t/L0 = 1, the diapycnal displacements due
to mixing have become significant, while the mean square isopycnal displacements
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reach a maximum and stabilize at nearly constant values for times u0t/L0 > 2. The
mean square diapycnal displacements continue to grow and become the dominant
contributor to the total mean square particle displacements. Physically, the Lagrangian
mixing causes the density of fluid particles to relax towards the local background
mean value at a rate that strongly limits the density perturbations that they carry,
even though the displacements from their original positions become large in this
case. In other words, mixing changes the densities of fluid particles in a manner that
limits any ‘memory’ of their density marking. If mixing were absent, the diapycnal
displacement component would remain zero, and the isopycnal displacements (and
associated density fluctuations) would grow with time since the fluid particles retain
their initial density.

Turning to the Ri > 0 cases shown in figure 14, it can be seen that there are
two fundamental ways in which the stratification affects the evolution of the fluid
particle displacements. The most obvious effect, as already noted in § 4.2, is the
strong suppression of the total mean square vertical displacements which cease to
grow for times Nt � 2 and reach approximately constant values that scale inversely
on the strength of the stratification (note the different vertical scales in figure 14).
Secondly, the contributions from the isopycnal and diapycnal displacements change
as Ri increases. The mean square isopycnal displacements grow initially as in the
Ri = 0 case, but reach a well-defined peak at times corresponding to Nt � 2 before
subsequently decaying to zero at later times. The mean square diapycnal displacements
also initially grow as in the Ri = 0 case, but then level off at times corresponding
to between one and two buoyancy periods. At these and later times, the diapycnal
component accounts for nearly all of the total fluid particle displacements. Physically,
small-scale mixing changes the equilibrium level of the fluid particles, but as Ri

increases, the mixing is strongly suppressed which in turn limits these changes. As the
energy of the flow dissipates, fluid particles are driven by buoyancy forces to settle
into their new equilibrium levels.

The dispersion coefficients Kz, Ki and K∗ associated with the displacement statistics
(equation (2.8)) are shown in figure 15 as a function of time and for various Ri

numbers. The diapycnal diffusivity Kd is also shown for each case. (Note that the
‘noise’ in the computed K∗ values are statistical sampling errors associated with the
small number of particles used for the ensemble averages.)

It can be seen that Kz provides a poor indication of the diapycnal diffusivity
in all cases, even for Ri = 0. As Ri increases, Kz is strongly suppressed for times
corresponding to Nt � 2, and starts oscillating about zero. These effects on Kz are
associated with the attenuated growth in the mean square vertical displacements.
Furthermore, the isopycnal dispersion coefficient Ki gives a negative and oscillatory
contribution to Kz as Ri increases. The oscillations in Ki are linked to the buoyancy
frequency N and are associated with internal wave motions that do not produce any
significant irreversible mixing, i.e. these motions are adiabatic in the sense defined by
Winters et al. (1995).

The magnitudes of the diapycnal diffusivity Kd and dispersion coefficient K∗ are
also strongly suppressed as Ri increases, but the effects on their temporal evolution are
qualitatively different from those on Kz and Ki . In particular, there are no significant
wavelike features in the evolution of Kd and K∗, indicating that the diapycnal mixing is
independent of the internal wave motions. The dispersion coefficient K∗ is consistently
larger than the diffusivity Kd , although the differences become small as Ri increases.
As noted in § 2.2, these differences are expected to be small for high-Reynolds-number
turbulence.
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The results reported in this section confirm the notion, highlighted by PPH, that the
role of small-scale mixing in changing the density of fluid particles must be properly
accounted for in models for diffusion in stably stratified turbulence. The reason for
this is that significant reversible (or adiabatic) contributions to the flux can occur in
these flows, while it is the irreversible diapycnal contributions to the flux that are most
significant in terms of the flow energetics (Winters et al. 1995). The latter are entirely
due to the effect of small-scale mixing in changing the density of fluid particles.

4.3.3. Modelling small scale mixing

The Lagrangian mixing rate was modelled by PPH (following the work of Csanady
1964) with a linear mixing model in the form

κ∇2ρ ′ = −γNρ ′, (4.1)

where γ is a non-dimensional mixing coefficient. This model assumes that the
buoyancy time scale N−1 controls the mixing process. The conceptual basis for
this supposition (PPH; Hunt 1985) is that strongly stable flows are expected to be
dominated by internal wave motions with mixing occurring during rare intermittent
events (such as wave ‘breaking’) that generate local overturning.
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Figure 16. The mixing coefficient γ in the PPH model as a function of the local value of
NTL where TL = E/ε is the Lagrangian time scale. The solid line shows that γ ∼ (NTL)−1.

As noted by Hunt (1985), multiplying (4.1) by ρ ′ and ensemble averaging (assuming
homogeneity) yields

ερ = κ(∇ρ ′ · ∇ρ ′) = γN ρ ′2, (4.2)

which can be used to estimate γ from the scalar dissipation rate ερ . Estimates of
γ obtained in this way are shown plotted in figure 16 as a function of the local
stability parameter NTL, where TL =E/ε is the decay time scale for the total energy
E. It can be seen that the mixing coefficient is not constant, but evolves with time
and reduces as the stratification strengthens. Values are in the range 0.001 � γ � 1.
However, plotted in this form, all the data collapse onto a single line γ � (NTL)−1,
suggesting that N−1 is not the appropriate choice of time scale in (4.1), and that a
reformulation of the PPH mixing model as

κ∇2ρ ′ = −γ ′TL
−1ρ ′, (4.3)

where γ ′ ∼ 1, provides a good description of the mixing in this transient flow for all
times and all stratification strengths. In this modified model the time scale TL, which
is insensitive to stratification (see § 4.1), controls the mixing process rather than N−1.
This formulation is consistent with the original model suggested by Csanady (1964).
Mixing models of this form are also widely used in PDF methods for application to
reacting flows where they are known as ‘interaction by exchange with the mean’ or
IEM models (see e.g. Pope 2000, p. 547).

Values of the mixing coefficient from (4.3), namely γ ′ = ερTL/ρ ′2, are plotted in
figure 17 as a function of time and for various Ri numbers. Note that for the initial
conditions used in the present simulations, it can be shown that these estimates give
γ ′ → Pr−1/2 as t → 0. Although there are significant temporal oscillations in γ ′ for
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Figure 18. The diapycnal turbulent diffusivity plotted as a function of LE
2/TL for a range

of Ri numbers and for times u0t/L0 > 1.

the strongly stable cases, if these oscillations are averaged out, the mixing coefficient
is approximately constant and insensitive to stratification strength. An average value
of γ ′ � 0.7 may be deduced from this data.

An alternative interpretation of these results is in terms of the mechanical-to-
scalar time-scale ratio ερTL/(ρ ′2/2) = 2γ ′ � 1.4. This time-scale ratio is widely used in
second moment closure models (see e.g. Pope 2000). It is evident from figures 16 and
17 that despite the wide range of stratification strengths, the time-scale ratio remains
similar to values (∼1.5) reported for experiments on thermally stratified decaying
grid turbulence (Warhaft 2000). Values obtained from DNS of stationary (forced),
isotropic, unstratified turbulence (Yeung 2001) are somewhat higher (∼2) and vary
slowly with Reynolds and Prandtl numbers. The insensitivity of the time-scale ratio
to stratification has important (simplifying) implications for modelling.

The IEM mixing model (equation (4.3)) predicts the diapycnal (turbulent) diffusivity
in these flows as (using (2.12))

Kd =
ερ

(∂ρ/∂z)2
= γ ′ LE

2

TL

, (4.4)

where LE =(ρ ′2)1/2/|∂ρ/∂z| is the Ellison ‘overturning’ length scale. This prediction
is tested in figure 18. The initial transient in the development of the scalar field for
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a function of LE

2/TLκ for a range of Ri numbers and for times u0t/L0 > 1. The dashed line
is the IEM model prediction (equation (4.5)).

times u0t/L0 < 1 has been excluded from the plot. It can be seen that Kd increases
linearly with LE

2/TL as required by (4.4), with a slope γ ′ � 0.7. To place these results
in the context of a general scaling prediction, the total diapycnal diffusivity Kd + κ

is shown plotted in non-dimensional form in figure 19 for comparison with the IEM
model prediction, namely

(Kd + κ)/κ = 1 + γ ′ LE
2

TLκ
. (4.5)

Plotted in this form, the data collapse well and are consistent with the IEM model
prediction. The parameter Pet = LE

2/TLκ may be interpreted as a turbulent Péclet
number based on the vertical overturning scale LE and a velocity scale LE/TL. In the
most stable cases (Ri � 40), the values of Pet are less than one and the total diapycnal
diffusivity reverts to molecular values. When Pet > 1 the turbulent diffusivity starts
to dominate. The prediction of (4.5), supported by the data shown in figure 19, is
important because it establishes a direct link between the model for Lagrangian
mixing and the diapycnal diffusivity.

It has been suggested (see Fox 1996 and Pope 1998 for a detailed discussion) that
small-scale mixing should be independent of the velocity at high Reynolds numbers,
i.e. that the correlation w∇2ρ ′ should approach zero in that limit. The IEM model is
inconsistent with this and predicts (from (4.3))

κw∇2ρ ′ = −ερwρ ′/ρ ′2. (4.6)

An ‘interaction by exchange with the conditional mean’ model (IECM) may be defined
as

κ∇2ρ ′ = −γ ′
cTL

−1(ρ − ρ | w) = −γ ′
cTL

−1(ρ ′ − ρ ′ | w), (4.7)

where the conditional scalar average ρ | w (the expected value of ρ given w) is used

as the reference density in (4.3). Since wρ ′ = wρ ′ | w, it follows that the IECM model

enforces the constraint w∇2ρ ′ =0.
Computed values of the correlations κw∇2ρ ′ from the simulations are plotted

in figure 20 as a function of time and for various Ri numbers. Also shown are
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Figure 20. Correlations between vertical velocity and mixing as a function of time (dashed
lines) for (a) Ri = 0.39; (b) Ri = 1.58; (c) Ri = 10.0; (d) Ri = 39.5. The solid lines are the IEM
model predictions (equation (4.6)).

the IEM model predictions (equation (4.6)). It can be seen that the correlations
are generally non-zero and negative, but their magnitudes decrease for times t � 1
and with increasing Ri. The IEM model predictions are generally consistent with the
simulation data, especially for the less stable cases where diapycnal mixing is stronger.
The IEM model therefore performs better than the IECM model at these low Re

numbers.
If the conditional average ρ ′ | w is assumed to vary approximately linearly with w

(Fox 1996; Pope 1998),

ρ ′ | w =
wρ ′

w2
w, (4.8)

then it follows from (4.3) and (4.7) that the mixing coefficient γ ′
c for the IECM model

is given by

γ ′
c = γ ′ (1 − R2

ρw

)−1
, (4.9)

where Rρw = wρ ′/(ρ ′2 w2)1/2 is the flux correlation coefficient. In the present
simulations, Rρw → 1 as t → 0, so that (4.9) is unrealistic near t = 0. Disregarding the
initial transient which is an artefact of the specified initial conditions, the differences
between γ ′ and γ ′

c , as given by (4.9), are small in the stably stratified cases since the
flux correlation coefficient is suppressed by the stratification.

4.4. Flow structure

In this section, we present features of the flow structure as it evolves. We focus on
over-turning motions and their relationship to mixing.

Visualization of the vertical density gradients can indicate the presence (or absence)
of overturns in a stratified flow. Three-dimensional plots of the vertical density
gradient fields are shown in figure 21 at times u0t/L0 = 1, 2, 3 and 4, and for
Ri = 0.39, 1.58 and 10. The isosurface levels shown in the plot mark the boundaries
of overturning regions (i.e. where ∂ρ/∂z =0) while non-overturning regions are
transparent. It can be seen that overturns disappear in all cases at times, Nt � 2π,
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i.e. after about one buoyancy period. This is also when the mixing collapses (see
figure 11b), which shows that mixing is strongly related to the presence of unstable
density gradients and hence overturns in the flow.

Visualizations of the density fields by Metais & Herring (1989) revealed similar
changes to those described here. They linked this change at Nt � 2π to the behaviour
of the Ellison scale LE , noting that LE ∼ Lo ∼ Lk at these times, where Lo = (ε/N3)1/2

is the Ozmidov scale and Lk = (ν3/ε)1/4 is the Kolmogorov microscale.
Diamessis & Nomura (2004) have previously shown that overturn peripheries are

sites of high diapycnal mixing. We visualized the flow fields associated with some
extreme mixing events to identify the structures associated with these events. In
figure 22, isosurfaces of the vertical density gradients as well as two-dimensional
slices in the (x, z)-, (y, z)- and (x, y)-planes for some high mixing events are shown. It
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Figure 22. Isosurfaces and contour plots of the vertical density gradient in the (x, z)-, (y, z)-
and (x, y)-planes for high mixing events for (a) Ri = 0.39, u0t/L0 = 0.725; (b) Ri = 0.39,
u0t/L0 = 1.100; (c) Ri = 1.58, u0t/L0 = 0.425; (d) Ri = 1.58, u0t/L0 = 1.475. The crosses and
black filled circles indicate the position of the particle at the high mixing event. The contour
levels shown mark the critical value of zero beyond which gradients become unstable.

is clearly evident that these intermittent extreme mixing events occurred close to, but
not within, overturning regions. A simple conceptual model of an overturning region
that is consistent with these observations is depicted schematically in figure 23 (after
Ivey et al. 2000), and shows how the wrapping and folding of isopycnals can give rise
to high scalar gradients (and diapycnal fluxes) around the periphery of overturns.

Isosurfaces of the enstrophy (mean-square vorticity) for Ri = 0.39, 1.58, 10 and 158
and at times u0t/L0 = 1, 2, 3 and 4 are shown in figure 24 (the surface levels are
three times the mean values). For the high Ri cases, there is a clear emergence of
randomly distributed ‘pancake-shaped’ structures with near horizontal orientation (see
figure 24h, l, p), as also previously reported by Kimura & Herring (1996). These
features start becoming evident for times Nt � 4π so that it appears that their
emergence is related to the suppression of overturns and decoupling of the vertical
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Figure 23. Schematic representation of the wrapping and folding of isopycnals by an over-
turning eddy resulting in high scalar gradients and diapycnal fluxes around the periphery of
the overturn (after Ivey et al. 2000).

and horizontal dynamics of the flow. The main contribution to the enstrophy in these
patches is from the horizontal components of the vorticity field.

To investigate further the flow structure associated with these ‘pancake’ enstrophy
patches, we have plotted the tracks for 8 sets of 64 fluid particles, each set originating
on a different (x, y)-plane. The (x, y)-projection of these streaklines for the case
Ri = 1000 and for times 5 � u0t/L0 � 10 are shown in figure 25. In this strongly
stratified case, the particles are essentially constrained to horizontal planes. At these
late times, corresponding to Nt � 150, there is evidence of the emergence of large-
scale horizontal vortices in a layered formation with strong vertical variability. For
example, circular vortex motion is evident in the streak patterns at z = 34, 42 and
50 in figure 25, but the patterns are different at each of these z-levels. Streaklines
at other intermediate z-levels do not show any evidence of vortex motion. These
features were predicted by Riley et al. (1981) on the basis of a scaling analysis for the
low-Froude-number regime (see Riley & Lelong 2000 for a more recent review). Praud,
Fincham & Sommeria (2005) observed and studied similar features in laboratory
experiments that focused on this low-Froude-number regime. The visualization in
figure 25 is apparently the first time that direct evidence for the emergence of these
modes from initially isotropic simulations of stably stratified turbulence has been
reported. Similar structures are also evident in the simulations at Ri =158, but for
smaller Ri numbers the streak patterns start becoming more disorganized, suggesting
that these modes only become apparent at very large times, say Nt � 50. The ‘pancake’
enstrophy patches in figure 24 appear to be associated with shear layers between the
layered vortex modes. It has been suggested (e.g. Riley & Lelong 2000; Riley &
deBruynKops 2003) that at high Re numbers, these shear layers could become locally
unstable, thereby providing an additional source of turbulence and mixing in these
flows.

5. Conclusions
In this study, we have exploited the detailed information available from DNS to

investigate the properties of Lagrangian mixing in transient (decaying) homogeneous
stably stratified turbulence. This is intended as a first step towards developing
improved models for dispersion and mixing in stably stratified environmental flows.
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Figure 24. Isosurfaces of enstrophy for (a) Ri = 0.39, Nt = 0.6; (b) Ri = 1.58, Nt = 1.3;
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A Lagrangian perspective of the mixing following fluid particles has yielded some
new insights into the mixing processes in these flows and into the way that the
stratification affects them.

The main conclusions concerning the questions outlined in § 1 may be summarized
as follows.

(i) The results indicate that small-scale mixing processes dominate the changes in
density perturbations ρ ′ following fluid particles for weak stratification. As the effects
of stratification become more significant (at larger Ri and/or for times Nt � 2π),
mixing is strongly suppressed and advection within the background mean density
gradient starts to dominate the changes in ρ ′.

(ii) After a short initial transient, diapycnal displacements due to small-scale
mixing dominate the dispersion of fluid particles in all cases, including for weak
stratification. The relationship between the diapycnal diffusivity and the vertical
dispersion coefficients depends on the stratification. In general, the overall dispersion
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Figure 25. Streaklines for Ri = 1000 and times 5 < u0t/L0 < 10. Each panel contains streak-
lines for 64 particles released on a specific horizontal plane as indicated by the z-grid co-
ordinate above each one.

coefficient Kz is a poor indication of the diapycnal diffusivity. This is mainly because
significant reversible (or adiabatic) contributions to the flux can occur in these flows, in
particular as Ri increases. The irreversible diapycnal mixing appears to remain largely
unaffected by internal wave motions. However, this mixing is strongly suppressed by
the stratification because buoyancy forces limit the vertical displacements of fluid
particles and ultimately suppress the overturning motions that are required to generate
diapycnal mixing.

(iii) The time scale for the density changes following fluid particles has been found
to be approximately independent of the stratification for these transient flows. In
particular, it does not scale on N−1 as suggested by the PPH model. Instead, the
mixing time scale is linked to the energy decay time scale TL which is relatively
insensitive to the stratification. We have shown how the mixing model predicts a
parameterization for the diapycnal diffusivity in these flows, e.g. the IEM model
predicts that the diapycnal diffusivity scales on the Ellison overturning length scale
and energy decay time scale.

(iv) There are large changes in the structure of these transient flows as they
evolve under the influence of buoyancy forces. Two features of these changes are
important with respect to mixing. First is an approximate decoupling of the vertical
and horizontal motions with the former becoming dominated by internal waves and
the latter comprising quasi-horizontal modes (but with large vertical variability). The
second is the suppression of overturning motions. The Lagrangian mixing rates have
been found to be strongly linked to changes in the flow structure as it evolves. In
particular, mixing is closely associated with overturning events. However, there is
evidence that the strongest mixing does not occur within these overturning regions,
but around their periphery.

The results reported here have important implications for the development of
improved models for diffusion in stably stratified turbulence. In particular, our results
confirm the basic notion, highlighted by PPH, that such models should properly
account for the role of small scale mixing processes in changing the densities of



Lagrangian mixing in decaying stably stratified turbulence 225

fluid particles. This issue is also important for the modelling of turbulent reactive
flows and some of the developments in that field could perhaps be applied to stably
stratified flows. The work of Das & Durbin (2005) essentially does this. However,
their Lagrangian stochastic model is statistically linked to existing second moment
closure models and does not seem to provide specific new insights into details of the
mixing process. Their mixing model is similar to the IEM model, but includes an
additional stochastic diffusion term. The IEM model is deterministic, and although it
gives good results in terms of statistical averages, it does not account for the detailed
temporal features of the mixing that are described in § 4.3.1, e.g. intermittency. The
implications of this remain to be clarified by future work.

Application of the results reported here to real geophysical flows is limited by the
low Reynolds number of the simulations and the absence of other common features
of naturally occurring flows, such as shear. Therefore, two useful extensions of the
present work would be as follows.

(a) To study Lagrangian mixing in flows that include the effects of shear in addition
to stable stratification. Hunt (1985) indicates that there is evidence that the mixing
between fluid particles increases with shear. In the context of the mixing model, this
suggests a possible increase in the mixing coefficient γ ′ due to shear.

(b) To expand the Reynolds and Prandtl (or Schmidt) number range of the
simulations to clarify their influence on mixing processes in stably stratified flows.
For example, at higher Reynolds numbers, the local instabilities observed by Riley &
deBruynKops (2003) could lead to additional overturns and mixing at late times.
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